24 research outputs found

    Loss-resilient Coding of Texture and Depth for Free-viewpoint Video Conferencing

    Full text link
    Free-viewpoint video conferencing allows a participant to observe the remote 3D scene from any freely chosen viewpoint. An intermediate virtual viewpoint image is commonly synthesized using two pairs of transmitted texture and depth maps from two neighboring captured viewpoints via depth-image-based rendering (DIBR). To maintain high quality of synthesized images, it is imperative to contain the adverse effects of network packet losses that may arise during texture and depth video transmission. Towards this end, we develop an integrated approach that exploits the representation redundancy inherent in the multiple streamed videos a voxel in the 3D scene visible to two captured views is sampled and coded twice in the two views. In particular, at the receiver we first develop an error concealment strategy that adaptively blends corresponding pixels in the two captured views during DIBR, so that pixels from the more reliable transmitted view are weighted more heavily. We then couple it with a sender-side optimization of reference picture selection (RPS) during real-time video coding, so that blocks containing samples of voxels that are visible in both views are more error-resiliently coded in one view only, given adaptive blending will erase errors in the other view. Further, synthesized view distortion sensitivities to texture versus depth errors are analyzed, so that relative importance of texture and depth code blocks can be computed for system-wide RPS optimization. Experimental results show that the proposed scheme can outperform the use of a traditional feedback channel by up to 0.82 dB on average at 8% packet loss rate, and by as much as 3 dB for particular frames

    Evidence for the Invalidity of the Wingate Test for the Assessment of Peak Power, Power Decrement and Muscular Fatigue

    Get PDF
    We hypothesized that the protocol-induced initial cadence of the WAnT is too high to allow high muscle force production and peak power generation. Twenty endurance, strength or power trained subjects (9 male, 11 female) completed two 30 s maximal exertion stationary cycle ergometer tests involving the traditional peak cadence start (TRAD) vs. a stationary start (STAT). Inertia corrected mechanical power, cadence, EMG from the vastus lateralis, and applied force to the pedals were measured continuously throughout both tests. Peak power was higher during TRAD; 11.32 ±1.41 vs. 10.40 ±1.35 Watts/kg (p < 0.0001), as was peak cadence; 171.4 ±16.3 vs. 120.9 ±15.1 rev/min (p < 0.0001). However, during TRAD EMG root mean squared (rms) increased continuously throughout the test, force applied to the pedals increased from 1 to 3 s (0.73 ±0.27 vs. 0.90 ±0.39 N/kg; p = 0.02) and thereafter remained relatively stable. EMG mean frequency also increased from 1 to 3 s, but then decreased throughout the remainder of the test. During TRAD, mechanical power decreased near immediately despite increasing EMG rms, EMGmean frequency and force application to the pedals. The initial 10 s of data from the WAnT is invalid. We recommend that intense cycle ergometer testing should commence with a stationary start

    Complex network analysis of CA3 transcriptome reveals pathogenic and compensatory pathways in refractory temporal lobe epilepsy

    Get PDF
    We previously described - studying transcriptional signatures of hippocampal CA3 explants - that febrile (FS) and afebrile (NFS) forms of refractory mesial temporal lobe epilepsy constitute two distinct genomic phenotypes. That network analysis was based on a limited number (hundreds) of differentially expressed genes (DE networks) among a large set of valid transcripts (close to two tens of thousands). Here we developed a methodology for complex network visualization (3D) and analysis that allows the categorization of network nodes according to distinct hierarchical levels of gene-gene connections (node degree) and of interconnection between node neighbors (concentric node degree). Hubs are highly connected nodes, VIPs have low node degree but connect only with hubs, and high-hubs have VIP status and high overall number of connections. Studying the whole set of CA3 valid transcripts we: i) obtained complete transcriptional networks (CO) for FS and NFS phenotypic groups; ii) examined how CO and DE networks are related; iii) characterized genomic and molecular mechanisms underlying FS and NFS phenotypes, identifying potential novel targets for therapeutic interventions. We found that: i) DE hubs and VIPs are evenly distributed inside the CO networks; ii) most DE hubs and VIPs are related to synaptic transmission and neuronal excitability whereas most CO hubs, VIPs and high hubs are related to neuronal differentiation, homeostasis and neuroprotection, indicating compensatory mechanisms. Complex network visualization and analysis is a useful tool for systems biology approaches to multifactorial diseases. Network centrality observed for hubs, VIPs and high hubs of CO networks, is consistent with the network disease model, where a group of nodes whose perturbation leads to a disease phenotype occupies a central position in the network.Conceivably, the chance for exerting therapeutic effects through the modulation of particular genes will be higher if these genes are highly interconnected in transcriptional networks.FAPESP (09/53443-1, 05/56446-0, 05/00587-5, 11/50761-2)CNPq (305635/2009-3, 301303/06-1, 573583/2008-0

    Hippocampal CA3 Transcriptome Signature Correlates with Initial Precipitating Injury in Refractory Mesial Temporal Lobe Epilepsy

    Get PDF
    Background: Prolonged febrile seizures constitute an initial precipitating injury (IPI) commonly associated with refractory mesial temporal lobe epilepsy (RMTLE). in order to investigate IPI influence on the transcriptional phenotype underlying RMTLE we comparatively analyzed the transcriptomic signatures of CA3 explants surgically obtained from RMTLE patients with (FS) or without (NFS) febrile seizure history. Texture analyses on MRI images of dentate gyrus were conducted in a subset of surgically removed sclerotic hippocampi for identifying IPI-associated histo-radiological alterations.Methodology/Principal Findings: DNA microarray analysis revealed that CA3 global gene expression differed significantly between FS and NFS subgroups. An integrative functional genomics methodology was used for characterizing the relations between GO biological processes themes and constructing transcriptional interaction networks defining the FS and NFS transcriptomic signatures and its major gene-gene links (hubs). Co-expression network analysis showed that: i) CA3 transcriptomic profiles differ according to the IPI; ii) FS distinctive hubs are mostly linked to glutamatergic signalization while NFS hubs predominantly involve GABAergic pathways and neurotransmission modulation. Both networks have relevant hubs related to nervous system development, what is consistent with cell genesis activity in the hippocampus of RMTLE patients. Moreover, two candidate genes for therapeutic targeting came out from this analysis: SSTR1, a relevant common hub in febrile and afebrile transcriptomes, and CHRM3, due to its putative role in epilepsy susceptibility development. MRI texture analysis allowed an overall accuracy of 90% for pixels correctly classified as belonging to FS or NFS groups. Histological examination revealed that granule cell loss was significantly higher in FS hippocampi.Conclusions/Significance: CA3 transcriptional signatures and dentate gyrus morphology fairly correlate with IPI in RMTLE, indicating that FS-RMTLE represents a distinct phenotype. These findings may shed light on the molecular mechanisms underlying refractory epilepsy phenotypes and contribute to the discovery of novel specific drug targets for therapeutic interventions

    Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    An analysis is presented of events containing jets including at least one b-tagged jet, sizeable missing transverse momentum, and at least two leptons including a pair of the same electric charge, with the scalar sum of the jet and lepton transverse momenta being large. A data sample with an integrated luminosity of 20.3 fb−1 of pp collisions at √s=8 TeV recorded by the ATLAS detector at the Large Hadron Collider is used. Standard Model processes rarely produce these final states, but there are several models of physics beyond the Standard Model that predict an enhanced rate of production of such events; the ones considered here are production of vector-like quarks, enhanced four-top-quark production, pair production of chiral b′-quarks, and production of two positively charged top quarks. Eleven signal regions are defined; subsets of these regions are combined when searching for each class of models. In the three signal regions primarily sensitive to positively charged top quark pair production, the data yield is consistent with the background expectation. There are more data events than expected from background in the set of eight signal regions defined for searching for vector-like quarks and chiral b′-quarks, but the significance of the discrepancy is less than two standard deviations. The discrepancy reaches 2.5 standard deviations in the set of five signal regions defined for searching for four-top-quark production. The results are used to set 95% CL limits on various models

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Educomunicação, Transformação Social e Desenvolvimento Sustentável

    Get PDF
    Esta publicação apresenta os principais trabalhos dos GTs do II Congresso Internacional de Comunicação e Educação nos temas Transformação social, com os artigos que abordam principalmente Educomunicação e/ou Mídia-Educação, no contexto de políticas de diversidade, inclusão e equidade; e, em Desenvolvimento Sustentável os artigos que abordam os avanços da relação comunicação/educação no contexto da educação ambiental e desenvolvimento sustentável

    ON MACROBLOCK PARTITION FOR MOTION COMPENSATION

    No full text
    In the H.264/AVC video coding standard, motion compensation can be performed by partitioning macroblocks into square or rectangular sub-macroblocks in a quadtree decomposition. This paper studies a motion compensation method using wedges, i.e. partitioning macroblocks or submacroblocks into two regions by an arbitrary line segment. This technique allows the shapes of the divided regions to better match the boundaries between moving objects. However, there are a large number of ways to slice a block and searching exhaustively over all of them would be an extremely computer-intensive task. Thus, we propose a fast algorithm which detects the predominant edge orientations within a block in order to pre-select candidate wedge lines. Finally a comparison among macroblock partition methods is performed, which points to the higher performance of the wedge partition method. Index Terms — Quadtrees, wedges, motion compensation 1

    Gas Transfer at Water Surfaces 2010

    Get PDF
    PrefaceSection 1: Interfacial Turbulence and Air-Water Scalar TransferJ. Hunt, S. Belcher, D. Stretch, S. Sajjadi, J. Clegg [1]S.A. Kitaigorodskii [13]S.A. Kitaigorodskii [29]Y. Toba [38]D. Turney, S. Banerjee [51]J.G. Janzen, H.E. Schulz, G.H. Jirka [65]S. Komori, R. Kurose, N. Takagaki, S. Ohtsubo, K. Iwano, K. Handa, S. Shimada [78]J. Beya, W. Peirson, M. Banner [90]S. Mizuno [104]M. Sanjou, I. Nezu, A. Toda [119]M. Sanjou, I. Nezu, Y. Akiya [129]K. Takehara, Y. Takano, T.G. Etoh [138]G. Caulliez [151]Section 2: Numerical Studies on Interfacial Turbulence and Scalar TransferL.-P. Hung, C.S. Garbe, W.-T. Tsai [165]A. E. Tejada-Martínez, C. Akan, C.E. Grosch [177]W.-T. Tsai, L.-P. Hung [193]P.G. Jayathilake, B.C. Khoo, Zhijun Tan [200]H.E. Schulz, A.L.A. Simões, J.G. Janzen [208]Section 3: Bubble-Mediated Scalar TransferD.P. Nicholson, S.R. Emerson, S. Khatiwala, R.C. Hamme [223]W. Mischler, R. Rocholz, B. Jähne [238]R. Patro, I. Leifer [249]K. Loh, K.B. Cheong, R. Uittenbogaard [262]N. Mori, S. Nakagawa [273]Section 4: Effects of Surfactants and Molecular Diffusivity on Turbulence and Scalar TransferA. Soloviev, S. Matt, M. Gilman, H. Hühnerfuss, B. Haus, D. Jeong, I. Savelyev, M. Donelan [285]S. Matt, A. Fujimura, A. Soloviev, S.H. Rhee [299]P. Vlahos, E.C. Monahan, B.J.Huebert, J.B. Edson [313]K.E. Richter, B. Jähne [322]X. Yan, W.L. Peirson, J.W. Walker, M.L. Banner [333]Section 5: Field MeasurementsP.M. Orton, C.J. Zappa, W.R. McGillis [343]U.Schimpf, L. Nagel, B. Jähne [358]C.L. McNeil, E.A. D'Asaro, J.A. Nystuen [368]D. Turk, B. Petelin, J.W. Book [377]M. Ribas-Ribas, A. Gómez-Parra, J.M. Forja [394]A. Rutgersson, A.-S. Smedman, E. Sahlée [406]H. Pettersson, K. K. Kahma, A. Rutgersson, M. Perttilä [420]Section 6: Global Air-Sea CO2 FluxesR. Wanninkhof, G.-H. Park, D.B. Chelton, C.M. Risien [431]N. Suzuki, S. Komori, M.A. Donelan [445]Y. Suzuki, Y. Toba [452]M.T. Johnson, C. Hughes, T.G. Bell, P.S. Liss [464]Section 7: Advanced Measuring TechniquesO. Tsukamoto, F. Kondo [485]R. Rocholz, S. Wanner, U. Schimpf, B. Jähne [496]B.C.G. Gonzalez, A.W. Lamon, J.G. Janzen, J.R. Campos, H.E. Schulz [507]E. Sahlée, K. Kahma, H. Pettersson, W.M. Drennan [516]D. Kiefhaber, R. Rocholz, G. Balschbach, B. Jähne [524]C.S. Garbe, A. Heinlein [535]Section 8: Environmental Problems Related to Air-Water Scalar TransferW.L. Peirson, G.A. Lee, C. Waite, P. Onesemo, G. Ninaus [545]Y.J. Choi, A. Abe, K. Takahashi [559]Y. Baba, K. Takahashi [571]R. Onishi, K. Takahashi, S. Komori [582][593]Turbulence and wave dynamics across gas-liquid interfacesThe calculation of the gas transfer between the ocean and atmosphereThe influence of wind wave breaking on the dissipation of the turbulent kinetic energy in the upper ocean and its dependence on the stage of wind wave developmentMarvellous self-consistency inherent in wind waves : Its origin and some items related to air-sea transfersNear surface turbulence and its relationship to air-water gas transfer ratesTurbulent gas flux measurements near the air-water interface in an oscillating-grid tankSensible and latent heat transfer across the air-water interface in wind-driven turbulenceRainfall-generated, near-surface turbulenceEffects of the mechanical wave propagating in the wind direction on currents and stresses across the air-water interfaceTurbulent transport in closed basin with wind-induced water wavesPIV measurements of Langumuir circulation generated by wind-induced water wavesStudy of vortices near wind wave surfaces using high-speed video camera and MLSWind wave breaking from micro to macroscaleValidation of Eddy-renewal model by numerical simulationMass transfer at the surface in LES of wind-driven shallow water flow with Langmuir circulationCharacteristics of gas-flux density distribution at the water surfacesNumerical simulation of interfacial mass transfer using the immersed interface methodStatistical approximations in gas-liquid mass transferAn inverse approach to estimate bubble-mediated air-sea gas flux from inert gas measurementsExperimental setup for the investigation of bubble mediated gas exchangeGas transfer velocity of single CO2 bubblesMass transfer across single bubblesAeration of surf zone breaking wavesModification of turbulence at the air-sea interface due to the presence of surfactants and implications for gas exchange. Part I: laboratory experimentModification of turbulence at the air-sea interface due to the presence of surfactants and implications for gas exchange. Part II: numerical simulationsWind-dependence of DMS transfer velocity: Comparison of model with recent southern ocean observationsA laboratory study of the Schmidt number dependency of air-water gas transferOn transitions in the Schmidt number dependency of low solubility gas transfer across air-water interfacesAn autonomous self-orienting catamaran (SOCa) for measuring air-water fluxes and forcingThe 2009 SOPRAN active thermography pilot experiment in the Baltic SeaObservations of air-sea exchange of N2 and O2 during the passage of Hurricane Gustav in the Gulf of Mexico during 2008The effect of high wind Bora events on water pCO2 and CO2 exchange in the coastal Northern AdriaticSeasonal sea-surface CO2 fugacity in the north-eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula)Including mixed layer convection when determining air-sea CO2 transfer velocityAir-sea carbon dioxide exchange during upwellingImpact of small-scale variability on air-sea CO2 fluxesThe effect of wind variability on the air-sea CO2 gas flux estimationFuture global mapping of air-sea CO2 flux by using wind and wind-wave distribution of CMIP3 multi-model ensembleA Rumsfeldian analysis of uncertainty in air-sea gas exchangeAccurate measurement of air-sea CO2 flux with open-path Eddy-CovarianceCombined Visualization of wind waves and water surface temperatureMicroscopic sensors for oxygen measurement at air-water interfaces and sediment biofilmsDamping of humidity fluctuations in a closed-path systemImproved Optical Instrument for the Measurement of Water Wave Statistics in the FieldFriction Velocity from Active Thermography and Shape AnalysisEvaporation mitigation by storage in rock and sandDevelopment of oil-spill simulation system based on the global ocean-atmosphere modelStructure variation dependence of tropical squall line on the tracer advection scheme in cloud-resolving modelHigh-resolution simulations for turbulent clouds developing over the oceAuthor Inde
    corecore